
Application of the Theory of Dilute Polymer Solutions to the Assessment of the Structure and Properties of Styrene–Acrylic Acid Copolymers

O. I. Nikolaeva, T. S. Usacheva, T. A. Ageeva, and O. I. Koifman

Ivanovo State University of Chemistry and Technology, pr. F. Engel'sa 7, Ivanovo, 153000 Russia e-mail: onik@isuct.ru

Received November 1, 2006

Abstract—Properties of dilute solutions of polystyrene and styrene–acrylic acid copolymers in DMF and ethyl acetate were studied in the temperature range 20–35°C. It was shown that the dependences of the intrinsic viscosity and Huggins constants on temperature for the copolymers differ from that for polystyrene. Comparison of the "quality" of the solvents was carried out.

DOI: 10.1134/S1070363207070146

At present one of the actual directions of the polymer chemistry is synthesis of polymers for medicine and biology. Nikolaeva [1] performed a multistep transformation of copolymers of styrene with allyl alcohol to modified polymers containing porphyrin derivatives in the side chain. Such fragments impart to materials biological, photochemical, and catalytic activity. The transformation involves polymeranalogous processes and is carried out in solution. These is no doubt that the properties of the solution, polymer-solvent interactions, and the "quality" of the solvent, by which is meant the thermodynamic affinity between the polymer and solvent, contribute to the reaction progress. Therewith, the higher the intrinsic viscosity and the lower Huggins constant, the "better" is the solvent. In a "good" solvent, the molecular clew is better loosened than in "bad."

In the present work we took as objects for study styrene-acrylic acid copolymers I prepared by sus-

pension polymerization at monomer weight ratios of 1:1, 1:2, 2:1, and 3:1.

$$\begin{bmatrix} -\text{CH}_2 - \text{CH} - \\ -\text{COOH} \end{bmatrix}_n \begin{bmatrix} -\text{CH}_2 - \text{CH} - \\ -\text{COOH} \end{bmatrix}_m$$
 (1)

Characteristics of the starting copolymers and suspension polystyrene taken as reference are presented in Table 1.

Note that the composition of the copolymer does not correspond to the composition of the starting mixture of monomers, which, however, would be expected in view of the copolymerization constants [2]. At the same time, the general trend is that an increase in the fraction of acrylic acid in the starting monomers increases the fraction of its chain members in the copolymers. As shown in [1], in view of the large size

Table	1.	Characteristics	$\circ f$	nolystyrene	and	styrene_acrylic	acid	conolymers
Labic	1.	Characteristics	Οī	porystyrene	anu	styrche—acryme	aciu	CODOLATICIS

Run	Starting styrene: acrylic acid weight ratio	Composition (styrene: acryli	Molecular weight,	
no.	weight fauto	wt%	mol%	amu
1	0	100	100	22 600
2	3:1	97.5:2.5	26.9:1	7650
3	2:1	96.4:3.6	18.6:1	5840
4	1:1	90.3:9.7	6.7:1	4900
5	1:2	86.7:13.3	4.6:1	3830

Table 2. Effect of temperature on the rheologic characteristics of dilute solutions of polystyrene and styrene–acrylic acid
copolymers in DMF and ethyl acetate.

t, °C	Styrene: acrilic acid	D	MF	Ethyl acetate		
	weight ratio	[η]	$K_{ m H}$	[η]	$K_{ m H}$	
20	3:1	0.103 ± 0.004	2.957 ± 0.480	0.105 ± 0.002	2.563 ± 0.150	
25		0.095 ± 0.009	3.397 ± 1.285	0.093 ± 0.002	5.896 ± 1.142	
30		0.096 ± 0.009	3.874 ± 1.718	0.068 ± 0.020	3.874 ± 2.748	
35		0.083 ± 0.007	6.914 ± 1.501	0.081 ± 0.014	6.914 ± 1.107	
20	2:1	0.085 ± 0.005	5.909 ± 1.285	0.105 ± 0.002	0.909 ± 0.082	
25		0.084 ± 0.008	4.236 ± 1.080	0.086 ± 0.002	2.115 ± 0.901	
30		0.089 ± 0.002	3.138 ± 0.525	0.069 ± 0.009	5.664 ± 0.023	
35		0.069 ± 0.007	10.080 ± 2.008	0.060 ± 0.021	8.560 ± 1.151	
20	1:1	0.063 ± 0.017	30.097 ±4.250	0.090 ± 0.005	2.695 ± 0.082	
25		0.074 ± 0.004	11.836 ±2.354	0.083 ± 0.004	4.292 ± 1.982	
30		0.052 ± 0.012	41.621 ±3.608	0.037 ± 0.020	63.820 ± 7.201	
35		0.046 ± 0.011	50.366 ±3.280	0.045 ± 0.010	29.410 ± 3.983	
20	1:2	0.075 ± 0.006	22.672 ±2.870	0.082 ± 0.002	1.986 ± 0.821	
25		0.082 ± 0.006	15.230 ±2.150	0.081 ± 0.008	2.745 ± 0.280	
30		0.083 ± 0.002	10.637 ±1.857	0.070 ± 0.010	5.606 ± 2.007	
35		0.067 ± 0.003	28.869 ±2.505	0.057 ± 0.012	11.048 ± 2.020	
20	polystyrene	0.158±0.009	2.461±1.025	0.101 ± 0.003	3.353±1.008	
25		0.153±0.002	2.498±1.356	0.099 ± 0.005	4.032±1.200	
30		0.137±0.002	3.560±0.853	0.079 ± 0.018	6.538±2.050	
35		0.123±0.005	4.190±1.282	0.073 ± 0.021	9.306±2.871	

of the porphyrin fragment, it is expedient to have in the modified polymer 1–2 tetrapyrrole fragments per 100 elementary units of the macromolecular chain. Therefore, there is no need to further increase in the number of acrylic acid units in the copolymer.

Table 2 lists parameters of dilute solutions of the copolymers, intrinsic viscosity η and Huggins constant $K_{\rm H}$, as functions of temperature and polymer composition.

As known, η is correlated with hydrodynamic flow resistance, which for a homopolymer, namely polystyrene, dissolved in DMF will be higher than for polystyrene dissolved in ethyl acetate. As the temperature increases, the hydrodynamic flow resistance decreases (Fig. 1). On the whole the resulting data provide evidence for data for styrene–allyl alcohol copolymers [3].

The difference in the $[\eta]$ values for polystyrene solutions in DMF, obtained by us and reported in [3], is associated with the lower molecular weight of our polystyrene sample. In terms of "quality," DMF is a better solvent for polystyrene than ethyl acetate.

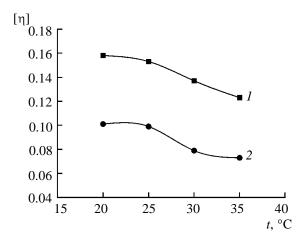
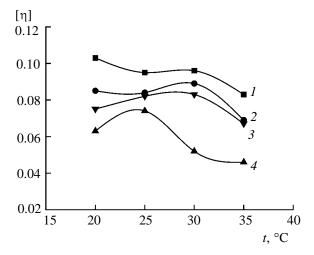
The strength of polystyrene–solvent interactions is illustrated by $K_{\rm H}$. In DMF this value smoothly grows

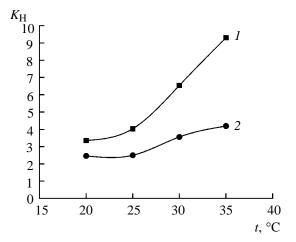
with temperature, while in ethyl acetate it changes in a different way (Fig. 2).

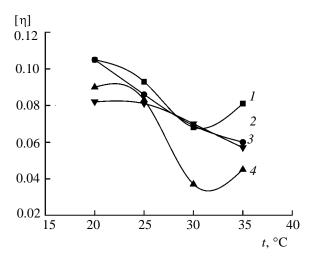
On the whole both η and $K_{\rm H}$ show that the "quality" of DMF and ethyl acetate decreases with temperature. The fact that $[\eta]$ decreases with temperature suggests that the macromolecular clew in DMF and ethyl acetate swells weaker, and the thermodynamic affinity of the solvent to polymer decreases. Such behavior is characteristic of systems with a lower critical solution temperature.

The dependences of $[\eta]$ and K_H on temperature for the copolymers differ from those observed for the homopolymer (Figs. 3 and 6). This fact provides evidence in favor of individuality of the copolymers obtained.

In [3] we explained an analogous difference for the styrene–allyl alcohol copolymer by a nonuniform distribution of allyl alcohol units along the polymer chain. Such explanation cannot be accepted in this work, because the experiments were carried out with the same polymer sample over the entire temperature range. As the fraction of acrylic acid units in the copolymer increases, the $[\eta] = f(t)$ dependence gradually transforms from a decreasing exponent to a


Fig. 1. Plots of intrinsic viscosity $[\eta]$ vs. temperature t for polystyrene solutions in (I) DMF and (2) ethyl acetate.


Fig. 3. Plots of intrinsic viscosity $[\eta]$ vs. temperature t for solutions of styrene–acrylic acid copolymers in DMF. Styrene: acrylic acid weight ratio: (1) 3:1, (2) 2:1, (3) 1:2, and (4) 1:1.

function with a well-defined extremum (Figs. 3 and 4). These findings show that increasing content of acrylic acid units in the copolymer favors transition from the systems with a lower critical solution temperature to systems with higher and lower critical solution temperatures, on account of the fact that the macromolecular clew shrinks both with increasing and decreasing temperature. Since in dilute solutions solute—solute interactions are absent, this effect can hardly be considered in some other way.

Note, that ethyl acetate is a worse solvent for the homopolymer but a "better" solvent for the copolymers (its $[\eta]$ is higher). The $[\eta] = f(t)$ dependences in

Fig. 2. Plots of Huggins constant $K_{\rm H}$ vs. temperature t for polystyrene solutions in (1) DMF and (2) ethyl acetate.

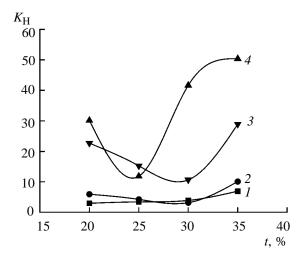
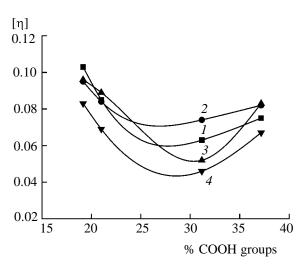
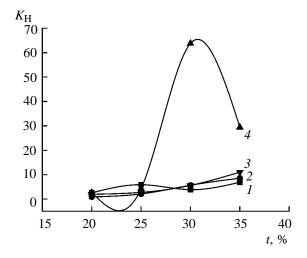


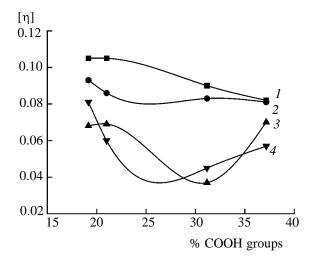
Fig. 4. Plots of intrinsic viscosity $[\eta]$ vs. temperature t for solutions of styrene–acrylic acid copolymers in ethyl acetate. Styrene: acrylic acid weight ratio: (1) 3:1, (2) 2:1, (3) 1:2, and (4) 1:1.


DMF transformed in curves with maxima (Fig. 3), while in ethyl acetate the tendency for transfer to curves with minima is observed (Fig. 4). Note also that, as the content of acrylic acid units in the copolymer increases, the "quality" of ethyl acetate worsens to a lower extent compared to toluene [3].

Figures 7 and 8 show the plots of $[\eta]$ on the content of acrylic acid units. These dependences are quite arbitrary because of different molecular weights of the copolymer samples used.

The presented data provide certain evidence for the absence of clear correlation between the solubility parameters of liquids and polymers. For example, the


Fig. 5. Plots of Huggins constant $K_{\rm H}$ vs. temperature t for solutions of styrene–acrylic acid copolymers in DMF. Styrene:acrylic acid weight ratio: (1) 3:1, (2) 2:1, (3) 1:2, and (4) 1:1.


Fig. 7. Plots of intrinsic viscosity $[\eta]$ vs. content of carboxy groups for solutions of copolymers in DMF. Temperature, °C: (1) 20, (2) 25, (3) 30, and (4) 35.

solubility parameter δ , $(J m^{-3})^{0.5}$, for polystyrene is 18.2×10^3 , for DMF 24.2×10^3 , and for ethyl acetate 18.2×10^3 [4].

The obtained $[\eta] = f(t)$ and $K_H = f(t)$ functions allow us to suggest appropriate temperature conditions for polymer-analogous transformations involving acrylic acid units, at which the macromolecular clew will be stronger loosened. Evidently, under these conditions the functional groups will be more accessible. The chemical transformation in itself will surely also depend on other factors, such as the activation energy of the reaction. However, the tightness of the

Fig. 6. Plots of Huggins constant $K_{\rm H}$ vs. temperature t for solutions of styrene–acrylic acid copolymers in ethyl acetate. Styrene:acrylic acid weight ratio: (1) 3:1, (2) 2:1, (3) 1:2, and (4) 1:1.

Fig. 8. Plots of intrinsic viscosity $[\eta]$ vs. content of carboxy groups for solutions of copolymers in ethyl acetate. Temperature, °C: (1) 20, (2) 25, (3) 30, and (4) 35.

macromolecular clew and its permeability should also contribute something to the degree of transformation of the functional groups.

EXPERIMENTAL

The intrinsic viscosities $[\eta]$ of the solutions of polymers were measured by the traditional dilution procedure in an Ubbelohde viscometer [5]. The polymer, 0.1 ± 0.00002 g, was placed in a calibrated 10-ml picnometer and dissolved in ethyl acetate or DMF at room temperature. The resulting solution was placed in the Ubbelohde viscometer and thermostated for

15 min at a specified temperature (20, 25, 30, or 35°C). After that the first measurement of the solution efflux time was carried out. The first portion of ethyl acetate or DMF, preliminarily weighed on analytical balances, was then added. The solution was stirred, thermostated for 15 min, and the second measurement of the efflux time was carried out. The further three efflux time measurements were carried out analogously. The relative viscosity was calculated by the formula

$$\eta_{rel} = \tau_i/\tau_0$$

where τ_i is the efflux time of the solution at definite dilution and τ_0 , efflux time of the straight solvent.

The specific viscosity was calculated by the formula

$$\eta_{sp} \ = \ \eta_{rel} \ - \ 1.$$

From the resulting data, the $\eta_{\rm sp}/c$ ratio was calculated, where c is the concentration of the solution in $\rm g/100~g$ solvent. From the $\rm \eta/c=f(c)$ dependences treated by the least-squares method, the intrinsic viscosities $\rm \eta$ and Huggins constants $K_{\rm H}$ were found by the formula

$$K_{\rm H} = \tan \alpha/[\eta]^2$$
,

where $\tan \alpha$ is the slope of the straight line $\eta_{sp}/c = f(c)$.

The composition of the copolymers was calculated from the carboxyl titration data in DMF [6].

ACKNOWLEDGMENTS

The work was financially supported by the Russian Foundation for Basic Research (project no. 04-03-32653).

REFERENCES

- 1. Nikolaeva, O.I., *Cand. Sci. (Chem.) Dissertation*, Ivanovo, 2005.
- 2. Fizika i khimiya voloknoobrazuyushchikh polimerov (Physics and Chemistry of Fiber-forming Polymers), Mel'nikov, B.N., Ed., Ivanovo: IGKhTU, 2005.
- 3. Nikolaeva O.I., Usacheva T.S., Ageeva T.A., and Koifman, O.I., *Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.*, 2006, vol. 49, no. 6, p. 46.
- Semchikov, Yu.D., Vysokomolekulyarnye soedieniya (Macromolecular Compounds), Nizhny Novgorod: Akademiya, 2003, p. 368.
- 5. Voyutskii, S.S., *Rasyvory vysokomolekulyarnykh so-edinenii* (Solutions of Macromolecular Compounds), Moscow: Goskhimizdat, 1960, p. 132.
- Toroptseva, A.M., Belogorodskaya, K.V., and Bondarenko, V.M., Laboratornyi praktikum po khimii i tekhnologii vysokomolekulyarnykh soedinenii (Laboratory Manual on the Chemistry and Technology of Macromolecular Compounds), Leningrad: Khimiya, 1972, p. 416.